36 research outputs found

    Fuzzy spectral and spatial feature integration for classification of nonferrous materials in hyperspectral data

    Get PDF
    Hyperspectral data allows the construction of more elaborate models to sample the properties of the nonferrous materials than the standard RGB color representation. In this paper, the nonferrous waste materials are studied as they cannot be sorted by classical procedures due to their color, weight and shape similarities. The experimental results presented in this paper reveal that factors such as the various levels of oxidization of the waste materials and the slight differences in their chemical composition preclude the use of the spectral features in a simplistic manner for robust material classification. To address these problems, the proposed FUSSER (fuzzy spectral and spatial classifier) algorithm detailed in this paper merges the spectral and spatial features to obtain a combined feature vector that is able to better sample the properties of the nonferrous materials than the single pixel spectral features when applied to the construction of multivariate Gaussian distributions. This approach allows the implementation of statistical region merging techniques in order to increase the performance of the classification process. To achieve an efficient implementation, the dimensionality of the hyperspectral data is reduced by constructing bio-inspired spectral fuzzy sets that minimize the amount of redundant information contained in adjacent hyperspectral bands. The experimental results indicate that the proposed algorithm increased the overall classification rate from 44% using RGB data up to 98% when the spectral-spatial features are used for nonferrous material classification

    Real-time hyperspectral processing for automatic nonferrous material sorting

    Get PDF
    The application of hyperspectral sensors in the development of machine vision solutions has become increasingly popular as the spectral characteristics of the imaged materials are better modeled in the hyperspectral domain than in the standard trichromatic red, green, blue data. While there is no doubt that the availability of detailed spectral information is opportune as it opens the possibility to construct robust image descriptors, it also raises a substantial challenge when this high-dimensional data is used in the development of real-time machine vision systems. To alleviate the computational demand, often decorrelation techniques are commonly applied prior to feature extraction. While this approach has reduced to some extent the size of the spectral descriptor, data decorrelation alone proved insufficient in attaining real-time classification. This fact is particularly apparent when pixel-wise image descriptors are not sufficiently robust to model the spectral characteristics of the imaged materials, a case when the spatial information (or textural properties) also has to be included in the classification process. The integration of spectral and spatial information entails a substantial computational cost, and as a result the prospects of real-time operation for the developed machine vision system are compromised. To answer this requirement, in this paper we have reengineered the approach behind the integration of the spectral and spatial information in the material classification process to allow the real-time sorting of the nonferrous fractions that are contained in the waste of electric and electronic equipment scrap. © 2012 SPIE and IS&

    Towards the ecological dredger

    Get PDF
    The dredging is a process that intrinsically damages the aquatic environment. Suctioning part of the aquatic bottom surface suppose not only change the ecosystem but it endanger the life of the animal and plant species. Nowadays, there is doing a lot of efforts to improve the ecological aspect of the dredging process. In this work, we propose the introduction of machine vision techniques to obtain this improvement, using hyperspectral imaging. The performed tests show that is possible to reduce the environmental impact applying these techniques in two points of the dredging process.Peer Reviewe

    Deep Neural Networks for ECG-Based Pulse Detection during Out-of-Hospital Cardiac Arrest

    Get PDF
    The automatic detection of pulse during out-of-hospital cardiac arrest (OHCA) is necessary for the early recognition of the arrest and the detection of return of spontaneous circulation (end of the arrest). The only signal available in every single defibrillator and valid for the detection of pulse is the electrocardiogram (ECG). In this study we propose two deep neural network (DNN) architectures to detect pulse using short ECG segments (5 s), i.e., to classify the rhythm into pulseless electrical activity (PEA) or pulse-generating rhythm (PR). A total of 3914 5-s ECG segments, 2372 PR and 1542 PEA, were extracted from 279 OHCA episodes. Data were partitioned patient-wise into training (80%) and test (20%) sets. The first DNN architecture was a fully convolutional neural network, and the second architecture added a recurrent layer to learn temporal dependencies. Both DNN architectures were tuned using Bayesian optimization, and the results for the test set were compared to state-of-the art PR/PEA discrimination algorithms based on machine learning and hand crafted features. The PR/PEA classifiers were evaluated in terms of sensitivity (Se) for PR, specificity (Sp) for PEA, and the balanced accuracy (BAC), the average of Se and Sp. The Se/Sp/BAC of the DNN architectures were 94.1%/92.9%/93.5% for the first one, and 95.5%/91.6%/93.5% for the second one. Both architectures improved the performance of state of the art methods by more than 1.5 points in BAC.This work was supported by: The Spanish Ministerio de Economía y Competitividad, TEC2015-64678-R, jointly with the Fondo Europeo de Desarrollo Regional (FEDER), UPV/EHU via GIU17/031 and the Basque Government through the grant PRE_2018_2_0260

    Multiclass insect counting through deep learning-based density maps estimation

    Get PDF
    The use of digital technologies and artificial intelligence techniques for the automation of some visual assessment processes in agriculture is currently a reality. Image-based, and recently deep learning-based systems are being used in several applications. Main challenge of these applications is to achieve a correct performance in real field conditions over images that are usually acquired with mobile devices and thus offer limited quality. Plagues control is a problem to be tackled in the field. Pest management strategies relies on the identification of the level of infestation. This degree of infestation is established through a counting task manually done by the field researcher so far. Current models were not able to appropriately count due to the small size of the insects and on the last year we presented a density map based algorithm that superseded state of the art methods for a single insect type. In this paper, we extend previous work into a multiclass and multi-stadia approach. Concretely, the proposed algorithm has been tested in two use cases: on the one hand, it counts five different types of adult individuals over multiple crop leaves; and on the other hand, it identifies four different stages for immatures over 2-cm leaf disks. In these leaf disks, some of the species are in different stadia being some of them micron size and difficult to be identified even for the non-expert user. The proposed method achieves good results in both cases. The model for counting adult insects in a leaf achieves a RMSE ranging from 0.89 to 4.47, MAE ranging from 0.40 to 2.15, and R2 ranging from 0.86 to 0.91 for 4 different species in its adult phase (BEMITA, FRANOC, MYZUPE and APHIGO) that may appear together in the same leaf. Besides, for FRANOC, two stadia nymphs and adults are considered. The model developed for counting BEMITA immatures in 2-cm disks obtains R2 values up to 0.98 for big nymphs. This solution was embedded in a docker and can be accessed through an app via REST service in mobile devices. It has been tested in the wild under real conditions in different locations worldwide and over 14 different crops.The authors would like to thank all field researchers that generated the dataset, carried out the annotation process, performed the validation in the wild, and in general, supported the work in Tecnalia and BASF specially to Javier Romero, Carlos Javier Jim ́enez, Amaia Ortiz, Aitor Alvarez and Jone Echazarra

    Contaje de mitosis en imágenes histológicas mediante redes neuronales convolucionales

    Get PDF
    El diagnóstico último del cáncer se realiza por los patólogos mediante el análisis de imágenes histológicas. Uno de los marcadores más importantes en el pronóstico y detección temprana del mismo es el denominado grado de proliferación, que se estima mediante el contaje de figuras mitóticas en imágenes histológicas tintadas con hematoxilina y eosina. Los patólogos realizan este contaje de mitosis de manera manual. Este proceso es costoso y subjetivo, existiendo discrepancias entre los expertos. En los últimos años, el aumento de microscopios escáneres ha permitido la digitalización de las muestras histológicas y su posterior procesamiento. En este trabajo se presenta un método para el contaje automático de mitosis en imágenes histológicas. Este método comprende dos fases: 1) selección de regiones candidatas a mitosis basada en técnicas convencionales de procesamiento de imagen; 2) clasificación mediante Redes Neuronales Convolucionales y técnicas de Deep Learning. El método ha sido validado sobre una base de datos con 656 casos, y se ha obtenido una sensibilidad de 0.617 y un valor de F1 de 0.541 en consonancia con el estado del arte

    Unravelling the effect of data augmentation transformations in polyp segmentation

    Get PDF
    Purpose: Data augmentation is a common technique to overcome the lack of large annotated databases, a usual situation when applying deep learning to medical imaging problems. Nevertheless, there is no consensus on which transformations to apply for a particular field. This work aims at identifying the effect of different transformations on polyp segmentation using deep learning. Methods: A set of transformations and ranges have been selected, considering image-based (width and height shift, rotation, shear, zooming, horizontal and vertical flip and elastic deformation), pixel-based (changes in brightness and contrast) and application-based (specular lights and blurry frames) transformations. A model has been trained under the same conditions without data augmentation transformations (baseline) and for each of the transformation and ranges, using CVC-EndoSceneStill and Kvasir-SEG, independently. Statistical analysis is performed to compare the baseline performance against results of each range of each transformation on the same test set for each dataset. Results: This basic method identifies the most adequate transformations for each dataset. For CVC-EndoSceneStill, changes in brightness and contrast significantly improve the model performance. On the contrary, Kvasir-SEG benefits to a greater extent from the image-based transformations, especially rotation and shear. Augmentation with synthetic specular lights also improves the performance. Conclusion: Despite being infrequently used, pixel-based transformations show a great potential to improve polyp segmentation in CVC-EndoSceneStill. On the other hand, image-based transformations are more suitable for Kvasir-SEG. Problem-based transformations behave similarly in both datasets. Polyp area, brightness and contrast of the dataset have an influence on these differences.This work was partially supported by PICCOLO project. This project has received funding from the European Union’s Horizon2020 research and innovation programme under Grant Agreement No 732111. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein

    Arquitecturas de aprendizaje profundo para la detección de pulso en la parada cardiaca extrahospitalaria utilizando el ECG

    Get PDF
    La detección de la presencia de pulso durante la parada cardiorrespiratoria extrahospitalaria es crucial para la supervivencia del paciente. Se ha demostrado que la toma manual del pulso no es muy fiable y que consume demasiado tiempo, por lo que es necesario desarrollar métodos automáticos que ayuden en la identificación del retorno de la circulación espontánea del paciente en parada. En este trabajo se propone utilizar técnicas de aprendizaje profundo para la discriminación automática de ritmos con pulso (PR) y sin pulso (PEA) utilizando solamente información proveniente del ECG. Se ha utilizado una base de datos que contiene 3914 segmentos de 5 segundos (3372 PR y 1542 PEA), que se dividieron en dos bases de datos con pacientes disjuntos para la optimización y evaluación de los métodos. Los mejores resultados se han obtenido utilizando una red neuronal profunda que contiene dos etapas de convolución y una etapa recurrente para la extracción de características y a continuación un clasificador. El modelo se evalúa en términos de sensibilidad (SE, porcentaje de PRs correctamente detectados) y especificidad (SP, proporción de PEAs correctamente detectados). Sobre la base de evaluación se obtuvieron una SE/SP de 94.2%/91.0%, por lo que puede concluirse que la detección automática del pulso utilizando sólo el ECG es viable mediante técnicas de aprendizaje profundo.Este trabajo ha recibido apoyo económico conjunto del Ministerio de Economía y Competitividad Español y del Fondo Europeo de Desarrollo Regional (FEDER) a través del proyecto (TEC2015-64678-R), de la Universidad del País Vasco/Euskal Herriko Unibertsitatea mediante la ayuda a grupos de investigación GIU17/031, y del Gobierno Vasco a través de la beca PRE_2017_1_0112

    Deep learning to find colorectal polyps in colonoscopy: A systematic literature review

    Get PDF
    Colorectal cancer has a great incidence rate worldwide, but its early detection significantly increases the survival rate. Colonoscopy is the gold standard procedure for diagnosis and removal of colorectal lesions with potential to evolve into cancer and computer-aided detection systems can help gastroenterologists to increase the adenoma detection rate, one of the main indicators for colonoscopy quality and predictor for colorectal cancer prevention. The recent success of deep learning approaches in computer vision has also reached this field and has boosted the number of proposed methods for polyp detection, localization and segmentation. Through a systematic search, 35 works have been retrieved. The current systematic review provides an analysis of these methods, stating advantages and disadvantages for the different categories used; comments seven publicly available datasets of colonoscopy images; analyses the metrics used for reporting and identifies future challenges and recommendations. Convolutional neural networks are the most used architecture together with an important presence of data augmentation strategies, mainly based on image transformations and the use of patches. End-to-end methods are preferred over hybrid methods, with a rising tendency. As for detection and localization tasks, the most used metric for reporting is the recall, while Intersection over Union is highly used in segmentation. One of the major concerns is the difficulty for a fair comparison and reproducibility of methods. Even despite the organization of challenges, there is still a need for a common validation framework based on a large, annotated and publicly available database, which also includes the most convenient metrics to report results. Finally, it is also important to highlight that efforts should be focused in the future on proving the clinical value of the deep learning based methods, by increasing the adenoma detection rate.This work was partially supported by PICCOLO project. This project has received funding from the European Union's Horizon2020 Research and Innovation Programme under grant agreement No. 732111. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein. The authors would also like to thank Dr. Federico Soria for his support on this manuscript and Dr. José Carlos Marín, from Hospital 12 de Octubre, and Dr. Ángel Calderón and Dr. Francisco Polo, from Hospital de Basurto, for the images in Fig. 4

    A statistical recommendation model of mobile services based on contextual evidences

    Full text link
    [EN] Mobile devices are undergoing great advances in recent years allowing users to access an increasing number of services or personalized applications that can help them select the best restaurant, locate certain shops, choose the best way home or rent the best film. However this great quantity of services does not require the user to find and select those services needed for each specific situation. The classical approaches link some preferences to certain services, include the recommendations given by other users or even include certain fixed rules in order to choose the most appropriate services. However, since these methods assume that user needs can be modelled by fixed rules or preferences, they fail when modelling different users or makes them difficult to train. In this paper we propose a new algorithm that learns from the user's actions in different contextual situations, which allows to properly infer the most appropriate recommendations for a user in a specific contextual situation. This model, by using of a double knowledge diffusion approach, has been specifically designed to face the inherent lack of learning evidences, computational cost and continuous training requirements and, therefore, overcomes the performance and convergence rates offered by other learning methodologies. © 2011 Elsevier Ltd. All rights reserved.This work is partially underwritten by the Ministry of Industry, Tourism and Trade of the Government of Spain under the research project CENIT-2008-1019Picón, A.; Rodríguez-Vaamonde, S.; Jaén Martínez, FJ.; Mocholí Agües, JB.; García, D.; Cadenas, A. (2012). A statistical recommendation model of mobile services based on contextual evidences. Expert Systems with Applications. 39(1):647-653. https://doi.org/10.1016/j.eswa.2011.07.056S64765339
    corecore